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Abstract

The theory-based closure relations for the wall and interfacial shear stresses obtained previously for laminar stratified
flow, are extended to be applicable also to turbulent flows in either or both of the phases. The closure relations are for-
mulated in terms of the single-phase-based expressions, which are augmented by two-phase interaction factors, due to
the flow of the two phases in the same channel. These closure relations, which are valid for smooth stratified flow in hor-
izontal or inclined pipes, were used as a platform for introducing necessary empirical corrections required in the stratified
wavy flow regime. Based on experimental data available from the literature, new empirical correlations for the wave effect
on the interface curvature, on the interfacial shear and on the liquid wall shear were obtained. The predictions of the two-
fluid model for the pressure gradient and holdup are tested against extensive data bank and some analytical solutions for
stratified flows. The favorable comparison suggest that the new closure relations are essentially representing correctly the
interaction between the phases over a wide range of flow parameters space in the stratified smooth and stratified wavy
regimes. The difficulties encountered due the possibility of obtaining multiple solutions in inclined flows are discussed.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Two-phase stratified flow is often observed in horizontal or slightly inclined systems in a gravity field. This
flow pattern is encountered in petroleum transportation pipes, in the nuclear and process industries under
steady or transient conditions.

The key engineering design parameters are the pressure drop and average in situ holdup and velocities.
Their prediction is commonly attempted via the two-fluid (1-D) model. However, the application of two-fluid
model is dependent on the presumed interface shape (either plane or curved) and on the availability of reliable
closure relations for the wall shear and interfacial shear stresses (averaged over the corresponding wetted
perimeter) in terms of the local/instantaneous holdup and velocities. These closure relations should correctly
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represent the effects of the systems parameters (e.g. fluids� flow rates and physical properties, tube diameter
and inclination) and the flow regime in either of the phases (laminar or turbulent).

The stratified flow regime is divided into two main sub-regimes: the stratified smooth and the stratified
wavy regimes. A smooth interface between the phases can be obtained only in a limited range of sufficiently
low flow rates. With increasing the relative velocity between the two layers the interface become unstable. Typ-
ically, in gas–liquid systems, with increasing the gas flow rate at a constant liquid rate, small amplitude, reg-
ular waves first appear. The wave amplitude increases with the gas flow rate resulting in irregular, three-
dimensional large amplitude roll waves, with possible drop entrainment from their crest. These interfacial
waves increase drastically the drag between the phases, and consequently cause a considerable increase in
the pressure gradient.

The modeling of the interfacial momentum transfer is considered the crucial issue in gas–liquid stratified
flows. The approach that is commonly followed is to use closure relations that are based on the knowledge
gained in single-phase flows, assuming these are valid for smooth stratified flow. Then, empirical corrections
were introduced to match with two-phase flow data in the stratified wavy regime. For Example, in gas–liquid
systems the interfacial shear stress is commonly modeled based on the flow of the gas phase. Then, either
empirical correlations for the interfacial friction factor (e.g. Cohen and Hanratty, 1968; Kawaji et al., 1987;
Kowalski, 1987), or empirical correction factors on the gas friction factor (e.g. Andritsos and Hanratty,
1987; Andreussi and Persen, 1987; Ottens et al., 1997, 1999), or correlations for the equivalent sand roughness
(e.g. Hamersma and Hart, 1987; Oliemans, 1987) were obtained based on experimental data. However, the
interfacial waves affect also the liquid wall shear stress, in particular in cases of thin liquid layers. Therefore,
empirical correlations were derived also for the liquid wall friction factor (e.g. Kowalski, 1987; Hagiwara
et al., 1989; Vlachos et al., 1997, 1999). Moreover, the shape of the interface in wavy flow is in fact unknown.
While most of the empirical correlations developed for the interfacial and wall shear stresses assumed a time-
averaged plane interface, experiments indicate that in the wavy regime the gas–liquid interface is concave.
Therefore, on top of the three closure relations for the shear stresses, an additional closure relation is in fact
required to determine the stratified flow geometry (Hamersma and Hart, 1987; Hart et al. (1989), Chen et al.,
1997; Watterson et al., 2002). Obviously, these four closure relations are not independent. For a specified
holdup (and pressure drop), the wetted perimeters are subject to variation upon changing the flow geometry.
Consequently, different values for the wall and interfacial shear stresses are implied by the two-fluid momen-
tum equations to match experimental data of the pressure drop and/or the holdup.

In a recent study (Ullmann et al., 2004) it was shown that there are some basic pitfalls in the commonly
used single-phase-based closure relations for the two-fluid (TF) models. These cause the TF model predictions
to fail even in the case the interface is smooth and plane and the flow in the two phases is laminar. Difficulties
are encountered already when the TF is applied to horizontal systems. These become more pronounced in the
case of inclined systems, where the holdup and pressure drop result from a fine balance between shear and
gravity forces. The pitfalls of the single-phase-based closure relations were rigorously identified in that study
in view of corresponding results obtained via the exact solution for fully developed stratified laminar pipe flow
(LPF).

New, theory-based closure relations for laminar stratified flow were derived in Ullmann et al. (2004) for the
wall and interfacial shear stresses, which account for the interaction between the phases. The new closure rela-
tions were formulated in terms of the single-phase-based expressions, which are augmented by the two-phase
interaction factors. The TF model predictions obtained with these new closure relations (denoted as MTF
model) were tested against the LPF exact solution. Very good results were obtained for the pressure drop
and holdup for a wide range of dimensionless parameters in co-current and counter-current laminar stratified
flows. However, although laminar stratified flow is frequently encountered in liquid–liquid systems, it may be
of limited relevance to practical applications of gas–liquid flows.

The purpose of the present study is first to extend the MTF closure relations for the case of turbulent strat-
ified flows with smooth and flat interface (Section 2). The MTF predictions are validated by comparison with
the results obtained for the case of pseudo-single-phase turbulent pipe flow and with pressure drop and holdup
data of Espedal (1998) for turbulent gas–liquid stratified flow with a smooth interface. These closure relations
are then used as a platform for introducing necessary empirical corrections for the stratified wavy regime. In
fact, the wave effect can be evaluated only with a reference to a model that uses reliable closure relations for
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cases of smooth interface. Based on the experimental data of Ottens (1998) and Chen et al. (1997) for holdups
and wall wetted perimeters in the stratified wavy regime, a new correlation is obtained for the curvature of the
gas–liquid interface (Section 3.1). This correlation, combined with pressure drop and holdup data from the
literature for co-current horizontal (Chen et al., 1997; Ottens, 1998; Badie et al., 2000) upward and downward
inclined stratified flows (Ottens, 1998; Espedal, 1998), are used to obtain new empirical corrections for the
wave effect on the interfacial shear stress and on the liquid wall shear stress (Section 3.2).

The results of this study indicate that the new closure relations are essentially representing correctly the
interaction between the phases over a wide range of parameters in the stratified smooth and stratified wavy
regime.

2. Smooth stratified flow

The stratified flow configuration and coordinates are schematically described in Fig. 1. The inclination
angle, b is always taken as positive. In co-current flow, the superficial velocities of the phases (U1s, U2s) are
both positive in case of downward flow and negative for the case of upward flow. Whereas in counter-current
flow U2s is negative (the light phase flows upward).

Assuming a fully developed stratified flow, the integral form of the momentum equations for the two fluids
are
� A1

dp
dz

þ s1S1 � siSi þ q1A1g sin b ¼ 0 ð1:1Þ

� A2

dp
dz

þ s2S2 þ siSi þ q2A2g sin b ¼ 0 ð1:2Þ
where A1,2 and S1,2 are the cross-sectional area and the wall perimeter of each of the fluids respectively and Si

is the interfacial perimeter. The in situ holdup of the lower phase is e = 4A1/pD
2. Eliminating the pressure

drop yields
s1
S1

A1

� s2
S2

A2

� siSi

1

A1

þ 1

A2

� �
þ ðq1 � q2Þg sin b ¼ 0 ð2Þ
2.1. Modified two-fluid (MTF) closure relations

The closure relations adopted for the wall and interfacial shear stresses are basically of the same structure of
the modified two-fluid (MTF) closure relations derived in Ullmann et al. (2004) for stratified laminar flows.
Based on the exact solutions obtained for fully developed stratified laminar flow, it was shown that the sin-
gle-phase-based closure relations for the shear stressed must be augmented by appropriate correction factors,
which account for the interaction between the phases. The MTF closure relations are herein generalized to
make them applicable also for cases of turbulent flow in either or both of the phases.
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Fig. 1. Schematic description of the stratified flow configuration and coordinates.
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The generalized expressions used for the wall shear stresses are
s1 ¼ � 1

2
q1f1jU 1jU 1jF 1jn1 signðF 1Þ; U 1 ¼

U 1s

e
ð3Þ

s2 ¼ � 1

2
q2f2jU 2jU 2jF 2jn2 signðF 2Þ; U 2 ¼

U 2s

1� e
ð4Þ
The friction factors f1 and f2 are based on the Reynolds number of the corresponding layer, each flowing as a
single phase in its own channel. In case of hydrodynamic-smooth wall surface, the Blasius-type power-law
expressions for the wall shear stresses can be used
f1 ¼
c1
Ren11

; f 2 ¼
c2
Ren22

ð5:1Þ
with
Re1 ¼
q1jU 1jD1

l1

; D1 ¼
4A1

ðS1 þ SiÞ
ð5:2Þ

Re2 ¼
q2jU 2jD2

l2

; D2 ¼
4A2

ðS2 þ SiÞ
ð5:3Þ
Given the flow regime in the two phases the constants (c1,2 and n1,2 are prescribed, e.g. laminar: c = 16, n = 1,
turbulent: c = 0.046, n = 0.2) the single-phase-based friction factors f1, f2 can be calculated. The factors F1 and
F2 represent corrections of the single-phase-based expressions for the wall shear stresses due the interaction
between the two fluids flowing in the same channel. It is worth emphasizing that the conventional TF closure
relations assume F1, F2 � 1. However, the hydraulic diameters D1, D2, (used to evaluate Re1 and Re2) are ad-
justed according to the relative velocity of the two phases; the interface is generally considered as �stationary�
(wetted) with respect to the flow of the faster phase and as �free� with respect to the flow of the slower phase
(Brauner and Moalem Maron, 1989). In the MTF closure relations, the hydraulic diameters D1, D2, (Eqs. (5.2)
and (5.3)) are calculated by considering the fluids interface as �stationary�, for both phases regardless their
relative velocity. The effects of variations of the effective hydraulic diameters due to the interaction between
the phases are embodied in the F1 and F2 factors. These are given by
F 1 ¼
1þ U 2

U 1

g11X
2 1� e

e

� �2

� ð2eÞ1�n2g12

" #

1þ U 2

U 1

X 2 1� e
e

� �2
ð6:1Þ

F 2 ¼
1þ U 1

U 2

g22
1

X 2

e
1� e

� �2
� 2 1� eð Þð Þ1�n1g21

� �

1þ U 1

U 2

1

X 2

e
1� e

� �2 ð6:2Þ
The X2 is the Martinelli parameter, representing the ratio between the superficial frictional pressure drops
obtained in single phase flow of either of the phases. In terms of the superficial Reynolds number of the
two phases (Re1s, Re2s) and the power-law exponents n1,2 it is given by
X 2 ¼ ð�dpf=dzÞ1s
ð�dpf=dzÞ2s

¼ c1
c2

Re�n1
1s

Re�n2
2s

q1

q2

jqjq; q ¼ Q1

Q2

¼ U 1s

U 2s
ð6:3Þ
The g11, g12, g21, g22 in Eqs. (6) are functions of the dimensionless wetted perimeters ~S1; ~S2 and ~Si in the pipe
geometry, ð~S ¼ S=DÞ:
g11 ¼
~S1

~S1 þ ~Si

; g22 ¼
~S2

~S2 þ ~Si

ð7:1Þ

g12 ¼
4

pþ 2

~S2

~S2 þ ~S1

; g21 ¼
4

pþ 2

~S1

~S2 þ ~S1

ð7:2Þ
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These functions were determined in Ullmann et al. (2004) based on the closure relations expected for s1 and s2
in stratified laminar flows.

Eqs. (3) and (4) indicate that for F1 = 1 (or F2 = 1), the wall shear stress corresponds to that obtained in
single-phase flow of the lower (or upper) fluid in its own channel. Indeed, as U1/U2 ! 0, Eq. (6.2) yields
F2 ! 1. In this case the interface can be considered ‘‘stationary’’ with respect to the upper phase and the wall
shear stress can be modeled based on single-phase correlations for the friction factor. This is a typical case in
gas–liquid horizontal and upward inclined systems, where the gas velocity is usually much higher than the
liquid velocity. In such cases of U2/U1 � UG/UL � 1, and when also X2(1 � e)2/e2 � 1, Eq. (6.1) renders
F1 ! g11 = S1/(S1 + Si). As a result, F n1

1 modifies the hydraulic diameter D1 (embedded in f1) of the slower
heavier phase to 4A1/S1 (instead of 4A1/(S1 + Si) as defined in Eq. (5.2)). This is equivalent to considering
the interface as �free� for the calculation of D1, as commonly assumed in cases of U2/U1 � 1. Obviously, sim-
ilar arguments apply for the opposite case of U2/U1 � 1, where the heavier fluid is the faster whereby F1 ! 1
and F2 ! g22 = S2/(S2 + Si). Evidently, the numerator of Eqs. (6) indicates that these F-interaction terms may
attain negative values and thus, these closure relations are capable of representing the occurrence of reversed
wall shear in cases of near-wall backflow in inclined flows (see Ullmann et al., 2004).

For the interfacial shear, the generalized MTF closure relations are
si ¼
� 1

2
q1fi1jU 1jðci2U 2 � U 1ÞjF i1jn1 ; jF i1jn1 > jF i2jn2

� 1

2
q2fi2jU 2jðU 2 � ci1U 1ÞjF i2jn2 ; jF i1jn1 6 jF i2jn2

8><
>: ð8:1Þ
with
F i1 ¼
1

1þ U 2

U 1

X 2 1� e
e

� �2
; F i2 ¼

1

1þ U 1

U 2

1

X 2

e
1� e

� �2 ; ð8:2Þ

ci1 ¼
2q

1þ q

����
����
1�n2

; ci2 ¼
2

1þ q

����
����
1�n1

ð8:3Þ
For hydrodynamic-smooth pipe wall (and smooth interface)
fi1 ¼ f1; f i2 ¼ f2 ð8:4Þ
Note that the values of the coefficients ci1 and ci2 (Eqs. (8.3)) differ from one only in cases of turbulent flow,
and generally their inclusion have only a mild effect on the pressure gradient and the holdup predictions. As
their inclusion introduces a discontinuity in the TF model derivatives when switching between the two si forms
of Eq. (8.1), they can conveniently be omitted (ci1, ci2 = 1).

The suggested structure of the closure relation for si is different than that commonly used in TF models.
Two-fluid models assume Fi � 1, and si is evaluated based on the wall shear stress of the faster phase, replacing
its velocity head by the velocity difference si / jU2 � U1j(U2 � U1). However, the MTF model suggests a dif-
ferent structure (see Ullmann et al., 2004); si should be modeled based on a characteristic velocity difference
times the faster fluid velocity. The same structure was found appropriate also to represent the interfacial shear
in core annular flows (Ullmann and Brauner, 2004).

The Fi1, Fi2 represent correction factors due to the interaction between the flows in the two layers. The first
form in Eq. (8.1) corresponds to the case where the interfacial shear is dominated by the flow of the heavy
phase, whereas the second form corresponds to a dominance by the light phase. Note that 0 < Fi1,2 6 1.
The use of the first form, with Fi1, is convenient in case of a much faster heavier layer. In limiting cases of
U2

U1
X 2 1�e

e

� 	2 � 1; F i1 ! 1, the interfacial shear stress is in fact dominated by the flow of the lower-layer. On

the other hand, in the opposite case of a much faster upper layer, Fi2 ! 1, indicating that the interfacial shear
stress is dominated by the flow of upper layer. The latter is the typical case in gas–liquid systems, where the
interfacial friction factor is commonly assumed to be the same as the wall friction factor of the gas phase.
However, the Fi interaction factors (Eq. (8.2)), and the criterion used in Eq. (8.1) for switching between the
two alternative expressions for si, suggest a matching between the solutions obtained with the two expressions
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for the interfacial shear. The MTF closure relation for the interfacial shear thus minimises the discontinuity
and other ill-effects encountered in the TF predictions (see Ullmann et al., 2003a).

For laminar stratified flow in both phases, n1 = n2 = 1, and X 2 ¼ ~lq, where ~l ¼ l1=l2. In this case the
closure relations given in Eqs. (3)–(8) reduce to those presented in Ullmann et al. (2004). Note, however, that
the Blasius power-law model for the wall friction factor (Eq. (5.1)) is valid for hydrodynamic smooth wall. In
case of turbulent flow in a rough pipe, the wall friction factors are calculated by using Haland (1983) equation
(see Appendix A). In fact, since the parameters of the power-law model for the friction factors (c1,2, n1,2) are
Reynolds number dependent, the use of the logarithmic expressions for the friction factors is preferable also in
cases of turbulent flow in smooth pipes (with zero roughness, js = 0).

2.2. Interface shape

The interface shape is approximated by a constant curvature arc (Brauner et al., 1996; Gorelik and Brau-
ner, 1999). Plane (flat) interface corresponds to /* = p, concave interfaces are described by p < /* 6 2p, and
convex interfaces by 0 < /* 6 p. The dimensionless geometrical variables in terms of /0 and /* are given in
Table 1.

In gravity dominated systems and in the smooth stratified flow regime (no secondary flows), the interface is
practically plane. Gravity dominated systems are associated with large Eotvos number (EoD = DqgD2/
8r � 1), corresponding to large diameter (D), high density difference (Dq) and low surface tension (r) systems.
The flow geometry can then be described either by the dimensionless wetted wall perimeter, /0 (see Table 1), or
alternatively by the thickness of the (lower) fluid layer, ~h ¼ h=D ¼ 0:5ð1� cos/0Þ. However, if surface tension
forces become important, the interface can be concave or convex, depending on the fluids/wall wetting angle, a
and the holdup. A closure relation for the characteristic interface curvature of the form /* = /*(EoD, e, a) was
obtained by Brauner et al. (1996) and its incorporation with stratified flow models was studied in Brauner
et al. (1998).

2.3. Solution procedure

The two-fluid momentum equations (Eqs. (1)), combined with the above closure relations for the shear
stresses Eqs. (3)–(8) and for the interfacial curvature, comprise the generalized MTF model. Upon substituting
the above closure relations in the combined momentum equation (2), an implicit equation for the interface
location, /0 (or the holdup) is obtained. The dimensionless solution parameters are the Martinelli parameter,
X2, the flow rates ratio, q, the inclination parameter, Y ¼ ½ðq1 � q2Þg sin b�=ð�dpf=dzÞ2s and the Eotvos num-
ber, EoD. Note, however, that in this study only gravity dominated systems will be considered, whereby in the
smooth stratified flow regime the interface is plane. Co-current flows correspond to X2 > 0 with Y > 0 (<0) for
down-flow (up-flow). Counter-current flows correspond to X2 < 0 and Y < 0.

Once a solution has been obtained for the in situ holdup, the corresponding pressure drop can be calculated
by either of Eqs. (1) or from their sum. The total pressure drop is composed of the gravitational (hydrostatic)
pressure drop, which is determined by the holdup:
Table
Flow g

~A ¼ A=
~A2 ¼ A
~A1 ¼ A
~S2 ¼ S
~S1 ¼ S
~Si ¼ S
dpg
dz

� �
¼ ½q1eþ q2ð1� eÞ�g sin b ¼ ½q2 þ ðq1 � q2Þe�g sin b ð9Þ
1
eometry for plane and curved interfaces

Curved interface, /* 5 p Plane interface, /* = p

D2 p/4 p/4

2=D2 0:25fp� /0 þ 0:5 sinð2/0Þ � ðsin/0= sin/
�Þ2½p� /� þ 0:5 sinð2/�Þ�g 0:25½p� /0 þ 0:5 sinð2/0Þ�

1=D2 0:25f/0 � 0:5 sinð2/0Þ � ðsin/0= sin/
�Þ2½/� � p� 0:5 sinð2/�Þ�g 0:25½/0 � 0:5 sinð2/0Þ�

2=D p � /0 p � /0

1=D /0 /0

i=D ðp� /�Þ sinð/0Þ= sinð/�Þ sin(/0)
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and the frictional pressure gradient (�dpf/dz). The dimensionless frictional pressure gradient is Pf and the
dimensionless difference in the hydrostatic pressure gradient, Pg (compared to single phase flow of the light
phase) are given by
Pf ¼ �
dp=dz� ðdpg=dzÞ

ð�dpf=dzÞ2s
; Pg ¼

ðdpg=dzÞ � ðdpg=dzÞ2s
ð�dpf=dzÞ2s

¼ Y e ð10Þ
2.4. Validation of the MTF model—discussion

The effect of the flow regime on the MTF model predictions are demonstrated in Fig. 2 for a test case of air–
water flow in an inclined pipe assuming the interface is plane and smooth. The significance of these assump-
tions is studied in the following Section 3 in view of the wave effects on the interface shape and shear stresses.

The constant inclination parameter used in Fig. 2 corresponds to a constant upward flow rate of air. In case
of turbulent air flow, the value of the inclination parameter used (Y = �15.5) corresponds to U2s = UGs =
8.975 m/s in a 2� upward inclined pipe (D = 0.051 m). A variation of the water flow rate is indicated in the
figures by variation of X2. The solution obtained with turbulent flow also in the liquid phase is indicated
by TL–TG. The solution that assumes laminar flow of the liquid phase is denoted in the figure as LL–TG. How-
ever, its relevance is limited to the region of very low X2(�0.01 < X2 < 0.01, �0.002 < q < 0.002), correspond-
ing to low liquid flow rates.

The solution obtained with laminar flow in both phases (LL–LG) for the same value of the inclination
parameter (Y = �15.5) corresponds to lower gas flow rates and a shallower inclination. The case of laminar
flow in both phases is compared in Fig. 2 with the exact solution of the Navier–Stokes equations for fully-
developed stratified laminar pipe flow (LPF solution, Ullmann et al., 2004). As shown, the MTF model pre-
dictions for the holdup (Fig. 2a) and for the frictional pressure gradient (Fig. 2b) in the case of laminar flow
(LL–LG) are close to the values obtained by the LPF solution in the counter-current and co-current regions.

In the counter-current region, for each specified flow rate of the liquid phase, there are two solutions for the
holdup (and pressure drop) up to the flooding point, beyond which no solution is obtained. One solution is of
a relatively low holdup of the heavy phase, the other with high holdup of the heavy phase, which is the
relevant mode when the resistance on the heavy-phase (liquid) outlet is increased. In liquid–liquid counter-
current flow, both of these stratified flow modes were obtained experimentally (Ullmann et al., 2003a). In
gas–liquid counter-current flow, the high liquid holdup mode is most probably unstable, due to wave bridging
phenomena, resulting in transition to bubbly or plug flow.

As shown in Fig. 2, the solution of high liquid holdup is obtained also for all liquid upward flow rates in the
co-current region. Stratified flow with high liquid holdup is generally not observed as it leads to slug forma-
tion. However, at the vicinity of positive X2 � 0 (corresponding to low upward liquid flow rates), multiple (3)
solutions are obtained (see the enlargements of this region in Fig. 2c). The additional two solutions of low
liquid holdup may correspond to a stable stratified configuration. In fact, the range of liquid flow rates where
triple holdups are predicted corresponds to the operational conditions where stratified flow was observed in
upward gas–liquid flows (Ullmann et al., 2003a). Note that the TL–TG solution shown in Fig. 2c is not
valid in this range of low liquid flow rates, since the liquid Reynolds number corresponds to laminar flow.
Generally, multiple solutions in the counter-current and co-current flows are a result of different possible
configurations that satisfies the fine balance between the gravitational and frictional forces for the same
operational conditions.

In co-current inclined flows backflow can be encountered near the pipe walls. In upward co-current flow,
downward backflow of the heavy phase can be obtained near the lower pipe wall. Similarly, in co-current
down-flow, upward backflow of the light phase may result adjacent to the upper wall. Since in the conven-
tional TF closure relations F1, F2 � 1, the wall shear stress is determined by the flow direction as indicated
by the average phase velocity hence the direction of the wall shear stress is erroneous in cases of near wall
backflow. These situations can be handled by the MTF model, as the sign of the F-interaction factors may
attain negative values, and thus affect a change of the direction of the wall shear stress (see Ullmann et al.,
2004). In the case study of Fig. 2, the high liquid holdup solution in the region of 0 < X2 < 1.5 corresponds
to reversed liquid wall shear, F1 < 0. Note that some anomalous behavior of TL–TG holdup and pressure
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gradient curves is obtained in the region where F1 changes its sign. This anomaly is however smoothed out if
small negative and positive F1 values are replaced by F1 = 0 (indicated by the dashed section in Fig. 2a).

In upward gas–liquid flow, however, the interface is wavy and the wave effects must be included in the
model in order to predict the corresponding holdup and pressure gradient in real systems. The case study
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of Fig. 2 will be used as a reference to study the wave effect on the holdup and pressure gradient in Section 3
(Fig. 11b).

The MTF closure relations for turbulent flows are tested by comparison of the predicted holdup and pres-
sure drop with the experimental data of Espedal (1998) that correspond to air–water flow in the smooth strat-
ified flow regime. The data was obtained in D = 0.0601 m rough wall (equivalent sand roughness,
js = 0.006 mm) slightly downward inclined pipe (b = 0.104�, 0.5�, 1� and 3�). The associated gas and liquid
Reynolds numbers correspond to turbulent flow in both phases. Therefore, the MTF model was applied with
the rough wall friction factors expressions (see Appendix A). The comparison shown in Fig. 3 substantiates
the validity of the MTF closure relations for stratified turbulent flows. The comparisons shown in Fig. 3
include also the experimental data corresponding to small interfacial waves. Compared to the smooth inter-
face data, the comparison with the small wave data of pressure gradient is somewhat less favorable; indicating
that some augmentation of the shear stresses is already required. However, it appears that in this case the
discrepancies do not justify the introduction of empirical corrections for the wave effect.

In general, gas–liquid systems represent an extreme case of q2/q1 ! 0 and l2/l1 ! 0, where typically, the
interaction between the phases is one-way, in particular in co-current flow in horizontal and upward inclined
pipes. The momentum transfer is from the fast gas phase to the slower liquid phase. In the MTF closure rela-
tions these gas–liquid systems are associated with U1/U2(e/(1 � e))2/X2 � 1, whereby F2 ! 1 and Fi2 ! 1.
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Fig. 3. The MTF model predictions depicted versus experimental data of Espedal (1998) for gas–liquid stratified flow in a downward
inclined 0.0601 m diameter pipe. Data correspond to smooth interface or to small interfacial waves: (a) holdup and (b) dimensionless
frictional pressure gradient.



A. Ullmann, N. Brauner / International Journal of Multiphase Flow 32 (2006) 82–105 91
Accordingly, the interfacial shear is dominated by the flow of the gas phase, and the gas wall shear stress is
well represented by the single-phase-based closure relation.

Two-fluid closure relations are challenged by cases of stratified flow of fluids of similar viscosities and den-
sities, whereby similar velocities of the two-phases are encountered. In such cases the interaction between the
flows of the two phases is two-way. In the MTF closure relations, values of X2(1 � e)2/e2 � O{1} are obtained
for similar flow rates (and holdups) of the two fluids, whereby both F1 5 1 and F2 5 1. Consequently, the
interaction factors affect the values of the wall shear stresses of both the upper and lower phases. Also,
depending on the flow rates ratio and holdups, the interfacial shear can be dominated by either the lower
phase or the upper phase (see Eq. (8.1)). Therefore, it is of particular interest to test the closure relations in
the extreme case of pseudo-single-phase laminar or turbulent flows with ~q ¼ q1=q2 ¼ 1 and ~l ¼ l1=l2 ¼ 1.

The case of horizontal laminar flow with ~l ¼ 1 corresponds to Poiseuille flow at the mixture flow rate of
Um = (U1s + U2s), even for q1 5 q2. The results of TF models can then be compared with the exact solution
for the pressure drop and holdup variations with the flow rates ratio, q = Q1/Q2 (e.g. Ullmann et al., 2004). In
case of single-phase turbulent flows, power-law models for the velocity profiles ð~u / ~y1=mÞ and the correspond-
ing power-law relation for the wall friction factor (Schlichting, 1979) can be used to represent an �exact� solu-
tion for the pressure drop. For instance, for the 1/7 power-law velocity profile, the wall friction factor is given
by f ¼ 0:079=Re0:25m , while for the 1/9 power-law f ¼ 0:046=Re0:2m , where Rem = qDUm/l. The �exact� holdups
vs. flow rates ratio associated with the power-law velocity profiles were obtained by numerical integration of
the velocity profile over the flow area of each of the phases.

The deviations of MTF model predictions from the �exact� solutions in case of laminar flow (n1,2 = 1) and
for turbulent flow (e.g. n1,2 = 0.2) are shown in Figs. 4 and 5 respectively. These figures show the ratio between
the MTF model predictions and the corresponding �exact� results obtained for the fluids flow rates ratio (Figs.
4 and 5a) and for the pressure gradient (Figs. 4 and 5b) vs. the lower layer thickness, h/D. The deviation of the
predicted flow rates ratio is less than 1% in the range of 0.1 < q < 10 (for extreme q ratios it is less than �5%
for turbulent flow and less than 10% for laminar flow). The maximal deviations of the pressure gradient are
less than 2%. For comparison, the predictions obtained by the conventional TF closure relations, which ignore
the F-interaction factors (e.g. Ullmann et al., 2003a), are also shown in these figures. The application of the
conventional TF model requires adjustment of the hydraulic diameter according to the relative velocity of the
phases. For h/D < 0.5, the upper phase is the faster. Thus, in the TF model fi = f2 is assumed and the hydraulic
diameters are calculated considering the interface as �stationary� with respect to the upper phase and as �free�
with respect to the lower phase. Vice versa, for h/D > 0.5, fi = f1 and the interface is considered as �stationary�
with respect to the faster lower phase and as �free� with respect to the upper phase. Evidently, the deviations of
the TF model from the �exact� values of the pressure drop and flow rates ratio are much larger than those of
the MTF model. These figures also demonstrate the difficulties encountered in applying the TF model for this
apparently simple case. In the vicinity of h/D = 0.5, q = 1, a solution (which is consistent with these assump-
tions) can be obtained only if the interface is considered as �free� with respect to both phases in the calculation
of the hydraulic diameters. While this assumption significantly improves the TF model predictions in the vicin-
ity of q ’ 1, the prediction of the pressure gradient deteriorates for q 5 1. A criterion must then be adopted
for switching between the solutions obtained with these two alternative models (�stationary� or �free� interface).
Such a switching, however, introduces discontinuity in the TF model predictions, which is avoided by the
MTF closure relations. The MTF closure relations suggest a smooth transition between upper phase
dominated flow with h/D < 0.5, to lower phase dominated flow when h/D > 0.5. As already discussed with ref-
erence to Fig. 2, the weaknesses of the TF model become even more crucial in inclined flows, where a different
body force is driving the two layers and backflow situations are encountered (see also in Ullmann et al.,
2003b).

Espedal (1998) reported also 59 holdup measurements for free interface single phase water flow in a down-
ward inclined pipe, b = 0.104�, 0.5�, 1� and 3� (D = 0.0601 m and equivalent sand roughness, js = 0.006 mm).
All the data correspond to turbulent flow. This is an interesting test case for the MTF closure relations. Evi-
dently, in free surface liquid flow si � 0 is expected, implying that the interfacial shear is still dominated by the
gas phase, albeit UL � UG � 0 (and thus U2/U1 = 0). In the commonly used two-fluid models, si = 0 must be
imposed. However, in the MTF model, si = 0 evolves from the closure relations for the interfacial shear (Eqs.
(8)). AlthoughUL � UG � 0 for U2s � UGs = 0, the condition for the second form of Eq. (8.1) is satisfied,
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suggesting that the interfacial shear should be calculated based on the (zero) flow of the gas phase, whereby
si = 0 is obtained.

Fig. 6 shows the predicted vs. experimental values of the holdup for the free surface liquid flow. The favor-
able agreement substantiates the closure relation used for the wall shear stress. In particular, it is worth noting
that although the friction factor fL ( = f1) is calculated based on hydraulic diameter that considers the interface
as �stationary�, the F1-interaction factor introduces the necessary correction and correctly represent the situa-
tion of a �free� liquid interface.
3. Wavy stratified flow

3.1. The interface curvature

In wavy stratified flows, the interface curvature is dominated by the secondary flows, which develop in both
phases. Measurements of holdup (e) and wetted perimeter (/0) in gas–liquid systems indicate extended wall
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wetting even in gravity dominated systems corresponding to large EoD (e.g. Hart et al., 1989; Chen et al., 1997;
Ottens, 1998). This implies a concave rather than plane interface. Possible mechanisms suggested in the liter-
ature include: dragging of the liquid by gas secondary flows (e.g. Laurinat et al., 1985; Lin et al., 1985) and/or
pumping action due to lateral pressure gradient induced by the waves (Fukano and Ousaks, 1989).

The evolution of secondary flows in gas–liquid wavy stratified flow is attributed to the non-uniformity of
the interfacial roughness experienced by the flow of the turbulent gas-phase; the wall roughness is smaller than
the apparent roughness of the wavy interface. These secondary flows have been studied experimentally (e.g.
Suzanne, 1985; Strand, 1993; Lopez, 1994; Flores et al., 1995) and numerically (Magnaudet, 1989; Jayanti
et al., 1990; Liné et al., 1996; Nordsveen and Bertelsen, 1997; Meknassi et al., 2000). It is worth noting that
in most of these numerical studies the gas–liquid interface was considered to be plane, while in wavy stratified
pipe flow the liquid interface was observed to be a concave. An additional closure relation is thus required for
the modeling to account for the variation in the interface shape.

Hamersma and Hart (1987) and Hart et al. (1989) suggested a constant liquid film thickness, d to model the
stratified flow configuration. The following experimental correlation was obtained for the measured wetted
wall fraction, H, in terms of the liquid holdup and the liquid Froude number, FrL:
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H ¼
~SL

p
¼ /0

p
¼ 0:52e0:374 þ 0:26Fr0:58L ; FrL ¼ qLU

2
L

ðqL � qGÞgD
; e ¼ 4H

d
D

ð11Þ
This correlation was obtained for low liquid load and high gas flow rates where the constant film thickness
approximation may reasonably describe the flow configuration. A more appropriate approximation for the
interface shape is a constant curvature arc (see Table 1). This geometry was used by Chen et al. (1997) com-
bined with the correlation of Hart et al. (1989) as a closure for /0 (in Chen et al., 1997, /0 � h and
p � /* � hi). However, the use of correlation (11) combined with the momentum equations to determine
/* (hence, the interface shape) is not strictly physical, as the curvature does not evolves from the axial momen-
tum equations. The momentum equations should be used to determine /0 (or the holdup). For instance, in
gravity dominated systems and in the absence of secondary flows the interface is plane (/* = p) and the
momentum equations yield the solution for /0 and the corresponding holdup. In this case the solution is
not necessarily compatible with correlation (11). As a matter of fact, /* (which is directly related to the inter-
face shape) is determined by lateral curving forces, for which a closure relation is required.

The value of /* can be deduced from simultaneous measurements of the holdup and the wetted perimeter,
~SL � ~S1 ¼ /0 (see Table 1). The following implicit equation has to be then solved for the unknown curvature,
/*
eexp �
1

p
/exp

0 � 1

2
sinð2/exp

0 Þ � sin2/exp
0

sin2/� /� � p� 1

2
sinð2/�Þ

� �
 �
¼ 0 ð12Þ
Data of simultaneous measurements of /0 and e were reported by Chen et al. (1997) and Ottens (1998).
These data correspond to gravity-dominated systems of large EoD, where surface tension effects are negligible,
and therefore, the interface in the stratified smooth regime is practically plane, /* = p. In the stratified wavy
regime, the secondary flows are of the order of the shear velocity, u� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sG=qG

p
. Hence, the curvature devi-

ations from a plane interface are assumed here to be correlated with the ratio of the gas phase shear stress,
sG � s2 (representing the momentum of the secondary flow) acting against the gravity restoring force,
ðqL � qGÞg cos bD. The data however indicate additional dependence of the curvature on the liquid layer
velocity and on the interface length. Based on the experimental data of Chen et al. (1997) and Ottens
(1998), the following correlation has been obtained for /*:
/� ¼ pþ 2tg�1 57:2
sG

ðqL � qGÞg cos bD

����
����
0:5 UL

UG

����
����
0:5

~Si

( )
ð13Þ
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The values predicted for /* by this correlation are compared with the experimental data in Fig. 7. The rms of
the correlation is 0.008 and it reasonably describes the variation of the interface curvature in both data sets.
This correlation suggests that the approach toward the annular configuration (/0 ! p, /* ! 2p) is enhanced
by increasing the shear of the gas phase, reducing the gravity force and increasing the liquid to gas velocity
ratio.

It is worth emphasizing that the wall shear stress in the gas phase is generally well-predicted by the closure
relation used in the stratified smooth regime (e.g. Kowalski, 1987; Liné and Fabre, 1996; Espedal, 1998). Thus,
given the holdup and the phases flow rates, the corresponding value of /* can be conveniently obtained by Eq.
(13) (using Eq. (4) for sG � s2), independently of the wave effects on the interfacial shear and the liquid wall
shear.

3.2. Augmentation of the interfacial shear and liquid wall shear

The interfacial waves are known to have a pronounce effect on the interfacial shear and on the liquid wall
shear stress. Assuming the wall shear stress in the gas phase (sG � s2) is unaffected by the interfacial waves,
experimental data of simultaneous measurements of the holdup and pressure drop, combined with Eq. (13)
for the interface curvature /*, can be used to deduce the corresponding values of the �experimental� liquid wall
shear stress, s1 � (sL)exp, and interfacial shear, (si)exp, using the following procedure. When the flow rates and
eexp are given, the two implicit Eqs. (12) and (13) are first solved to determine the two unknowns /0 and /*. In
cases measurements of /0 are also available (e.g. Chen et al. (1997) and Ottens (1998) data), the experimental
value of /0 and the corresponding solution of Eq. (12) for /* are used. Once the flow geometry has been deter-
mined, the two momentum balances, Eqs. (1.1) and (1.2) can be solved for the two unknowns (sL)exp, (si)exp.

To this aim, the data-base shown in Table 2 was used. The data correspond to the region of large amplitude
2-D and 3-D waves. The gas phase is turbulent, while the liquid phase is either laminar or turbulent, depend-
ing on its viscosity and flow rate. The transitional liquid Reynolds number was taken as ReL � Re1 = 1000.
Note however, that the Reynolds number is defined based on D1 ¼ 4A1=ðS1 þ SiÞ (see Eqs. (5)), whereas the
data correspond to UL/UG � 1, where the effective hydraulic diameter of the liquid phase is Deff

1 ¼ 4A1=S1.
Therefore, the corresponding effective transitional ReL is about 2000.

The so-obtained (si)exp and (sL)exp were compared with the corresponding values predicted by the closure
relations of smooth stratified flow (Eq. (8) and (3)). The ratios between the �experimental� values and those
predicted for smooth interface were used to derive correlations for the empirical correction factors to the
friction factors f1 � fL and fi that account for the wave augmentation effects.



Table 2
Data-base for holdup and pressure drop in wavy stratified flow

Source Fluids Liquid properties D [mm] Inclination Number of tests Pressure [bar]

qL [kg/m3] lL [kg/(ms)] r [N/m] js [mm]

Chen et al. (1997) Air/kerosene 813 �0.0018 0.029 77.9 Horizontal 48 1.9–2.4
0

Espedal (1998) Air/water 998 �0.001 �0.06 60.1 0.104–3� down 192 1
0.006 0.104–0.5� up

Ottens (1998) Air/water 998 �0.001 �0.06 51 Horizontal 112 1
0 0–1� down

0–2� up
Badie et al. (2000) Air/water 1000 �0.001 0.037 78 Horizontal 39 1

Air/oil 865 0.040 0.032 0 30
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The wave effect on the interfacial shear has been correlated by
F iw ¼ si
ðsiÞsmooth

� 1 ¼ 10:25
qG

qG0

� �0:33

Fr0:65Gs e
0:33 þ 0:1Ca1:2 � 15bI ð14:1Þ

FrGs ¼
qG

ðqL � qGÞDg cos b

� �0:5
jUGsj; Ca ¼ jUG � ULjlL

r
ð14:2Þ
where qG0 represents the air density at atmospheric pressure (=1.2 kg/m3), bI is the inclination (in radians,
positive for co-current down-flow, negative for concurrent upflow). Note however that the data used to derive
the correlation correspond to horizontal or slightly inclined pipes, with mild effect of the bI term. If application
of Eq. (14) is considered for steeper (downward) inclinations, this term should be better discarded.

The ratio of the wave effect on the interfacial shear and wall shear has been correlated by
FW ¼ si=ðsiÞsmooth

sL=ðsLÞsmooth

¼ 5:15Fr0:75Ls e�0:6 þ 0:25Ca0:7 ð15:1Þ
where
FrLs ¼
qL

ðqL � qGÞDg cos b

� �0:5
jULsj ð15:2Þ
Accordingly, in wavy stratified flow the closure relation for the interfacial shear (second form of Eq. (8.1) is
augmented by the factor (1 + Fiw). The closure relation for the liquid wall shear (Eq. (3)) is augmented by the
factor FLW = (1 + Fiw)/FW, in case the liquid wall shear stress is not reversed due to backflow (FL � F1 P 0).
Otherwise, for FL < 0 and FLW > 1, FLW = 1 is assumed (backflow is not augmented due to wave effects).

The fit between these two correlations and the values implied by the experimental data points are shown in
Fig. 8. The rms of correlation (14.1) and (15.1) are ’0.05 and 0.03, respectively. The scatter on the resulting
wall shear augmentation factor, FLW (Fig. 8c) is however larger. The exceptional large deviations, where the
correlation under predicts the values implied by the data (Ottens, 1998; Espedal, 1998) correspond to up-flow
with low gas velocities, close to the transition to slug flow and the triple solution region (see discussion below,
Fig. 11). The few highly scattered points of Badie et al. (2000) correspond to extremely low liquid flow rates
and holdups (e < 0.01), and their deviation may be a result of limited measurement accuracy.

The correlations and the data indicate that large waves can amplify the interfacial shear and the liquid wall
shear up to ten times the value predicted for smooth stratified flow (Fig. 8a and c). The wave effect on the
liquid wall shear is not restricted to thin liquid layers. The largest wave augmentation effect is indicated by
the data corresponding to high liquid viscosity. It is worth noting that the correlation for Fiw is highly influ-
enced by the oil–air flow data, and more data corresponding to viscous liquids as well as for high pressure
systems (high qG) are needed to substantiate the experimental correlations for Fiw.

The data of (Fiw)exp = (si)exp/(si)smooth � 1 was compared also with the widely used correlation of Andritsos
and Hanratty (1987). Following their assumption of a plane interface, one obtains a large scatter in (Fiw)exp
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Fig. 8. Values of the wave augmentation factors obtained by the experimental correlations in comparison with the values implied by the
data-base of Table 2: (a) interfacial shear augmentation, (b) ratio of interfacial shear and wall shear augmentation, (c) wall-shear
augmentation and (d) modified Andritsos and Hanratty (1987) correlation for the interfacial shear augmentation.
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(deduced from the data-base of Table 2) compared to their original correlation. However, adopting the struc-
ture of their correlation for the curved interface geometry (using Eq. (13) for /*), the following equation was
fitted to the (Fiw)exp values
F iw ¼ 37:2~h
0:9

hav

UGs

UGs;t

� 1

� �
; ~hhav ¼

pe

4~SL

; UGs;t ¼ 5
1:2

qG

� �
½m=s� ð16Þ
The UGs,t is the critical gas superficial velocity for transition from stratified smooth to stratified wavy (SS/SW)
suggested by Andritsos and Hanratty (1987). The results of this fit are shown in Fig. 8d. Compared to Fig. 8a
the scatter in Fig. 8d is larger. Moreover, negative values of Fiw result from Eq. (16) due to miss-prediction of
the critical gas-velocity for the SS/SW transition, should be discarded. Therefore, the correlation given in
Eq. (14.1) appears to be preferable.

It is worth noting that a flow pattern map or a criterion for transition to the stratified wavy regime (e.g.
Taitel and Dukler, 1976; Brauner and Moalem Maron, 1993) is still needed as a complementary information
also for Eqs. (14) and (15). This information is required in order to identify the range of operational conditions
for which the wave effects should be considered.
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3.3. Comparison with experimental data

Predicted versus experimental values of liquid holdup and axial pressure gradient corresponding to the
data-base of Table 2 are shown in Figs. 9 and 10. Considering the variety of gas–liquid systems studied,
the predictions are satisfactory. The deviations in most cases are less than 20% for both the predicted holdup
and the predicted pressure drop. Exceptional are the holdup data of Chen et al. (1997) for relatively thick
liquid layers (corresponding to low gas superficial velocities), which tend to be somewhat systematically
over-predicted. These data imply higher wave augmentation of the interfacial shear than that offered by cor-
relation (14). More pronounced deviations are obtained for some of the holdup data of Ottens (1998). How-
ever, in contrast to the comparison with the data of Chen et al. (1997), in this case the discrepancies are
inconsistent and characterize a limited number of specified data points. The four noticeably under predicted
holdups correspond to 1� upflow, while the four over predicted points correspond to 2� upflow. Both cases are
for the lowest gas flow rates where stratified flow was experimentally obtained, close to the transition to slug
flow. The reasons for these deviations deserve further elaboration.

Fig. 11a shows the variation of the holdup with increasing the air flow rate at a constant water flow rate in a
2� upward inclined pipe. As shown, a good agreement with the relevant data is obtained at relatively high air
flow rates. The large discrepancies between the predictions and the data appear at lower air flow rates, where
the holdup is very sensitive to small variations in the air flow rate. A small reduction of the experimental air
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Fig. 9. Comparison of the MTF model predictions for the holdup with data obtained in horizontal, upward and downward inclined flows
in the large wave stratified flow regime: (a) Badie et al. (2000), (b) Chen et al. (1997), (c) Ottens (1998) and (d) Espedal (1998).
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Fig. 10. Comparison of the MTF model predictions for the pressure gradient with data obtained in horizontal, upward and downward
inclined flows in the large wave stratified flow regime: (a) Badie et al. (2000), (b) Chen et al. (1997), (c) Ottens (1998) and (d) Espedal
(1998).
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flow rate would cause a dramatic increase of the water holdup. For these high holdups, the stratified flow con-
figuration become unstable due to wave bridging phenomena and slug flow is usually observed. This region of
air and water flow rates is close to the triple solution region discussed with reference to Fig. 2 (see also
Ullmann et al., 2003b). Depicting the predicted holdup at a constant air flow rate in the vicinity of the triple
solution region (Fig. 11b) reveals additional sources for miss prediction of the data.

Fig. 11b was obtained for the same operational conditions as those of Fig. 2. The results are obviously dif-
ferent here, due to the inclusion of the wave effects on the interfacial curvature and the augmentation of the
wall and interfacial shear stresses (FLw and Fiw). Similarly to Fig. 2, the triple solution region corresponds to
relatively low ULs, with turbulent air and laminar water flows (LL–TG). However, compared to Fig. 2, the tri-
ple solution region extends here to a wider range of liquid flow rates, mainly as a result of the interfacial shear
stress augmentation. In the triple solution region, reversed wall shear (FL � F1 6 0) due to backflow (BF) is
encountered for the high holdup and intermediate holdup solutions. Therefore, according to discussion in Sec-
tion 3.2, FLw = 1 is assumed for these two holdups. Augmentation of the wall shear stress is included only for
the calculation of the lowest holdup in the triple solution region, as well as for sufficiently high ULs, where
FL > 0 indicates no backflow also for the relatively high holdups (in the single solution region).
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Four experimental points that are available for the conditions of Fig. 11b are depicted in the figure. They
are located close to the predicted triple solution region, however, they are over predicted by the model. As
demonstrated in the figure, in this particular case, the model predictions are dramatically improved with a
minor (5%) increase of the interfacial shear. This sensitivity is obviously beyond the accuracy that can be
expected from the general correlation for Fiw, which has been obtained based on data for horizontal, down-
ward and upward inclined flows.

The model prediction in the triple solution region is also sensitive to the wall-shear augmentation. To dem-
onstrate this sensitivity, the results obtained with FLw = 1 (also with no backflow, dashed line) are shown in
Fig. 11c. In this case, the predicted triple solution range extends to even higher liquid flow rates. However, for
these higher flow rates, the flow is turbulent in the liquid layer. Therefore, the solution for TL–TG is also
depicted in Fig. 11c. The proximity of the experimental data to the various optional results of the model indi-
cates the sensitivity of predictions to small variations in either the wave augmentation factors of the shear
stresses, or the in the laminar/turbulent transitional Reynolds number. Therefore, any prediction in this region
should be approached with extra care, and one should examine all possible solutions and their sensitivity to
the model empirical correction factors and assumptions.

Finally, to demonstrate the generality of experimental correlations for the stratified wavy regime, the pre-
dictions of the MTF model are tested against pressure drop and holdup data obtained for different physical
properties and tube diameters than those included in the data-base of Table 2. Fig. 12 shows comparisons with
data of Hoogendoorn (1959) for horizontal air–oil flow in large diameter tube (D = 14 cm) corresponding to
the stratified wavy regime. The MTF model predictions for the experimental flow rates are aligned along the
correlation obtained by Hoogendoorn (1959) for this data. Moreover, the constant C of that correlation was
reported to slightly increase with the tube diameter (the corresponding data were not shown in Hoogendoorn,
1959), which appears to be consistent with the diameter effect indicated by the MTF closure relations
(Fig. 12b). Favorable agreement is also indicated by the comparison with the holdup data corresponding
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factor and (c) holdup for air/spindle–oil flow. The coordinates used are those of Hoogendoorn (1959).



Fig. 13. Validation of the MTF model predictions against experimental data of Wojtan et al. (2004) for vapor–liquid refrigerant (410A)
wavy stratified flow in D = 1.36 cm tube.
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to wavy stratified flow of air/spindle-oil (Fig. 12c). Similarly, a good agreement is indicted by the comparison
of the MTF model predictions with the holdup data reported by Wojtan et al. (2004) for vapor–liquid refrig-
erant flows (Fig. 13). These data correspond to small diameter tube (D = 1.36 cm), high density of the gas
phase (35 times that of atmospheric air) and small liquid viscosity (15% of water). To summarize, the favor-
able comparisons with a wider range of system parameters further substantiate the validity of the MTF closure
relations.

4. Conclusions

Accurate prediction of the holdup and pressure drop in stratified flow via 1-D two-fluid models require reli-
able closure relations for the wall and interfacial shear stresses and for the interface shape.

In gravity dominated systems and in the smooth stratified flow regime, the interface is practically flat. Still,
the commonly used closure relations for the wall and interfacial shear stresses that are borrowed from single-
phase flow theory and/or correlations may yield poor predictions of the pressure drop and holdup due to the
negligence of the effects of the interaction between the two phases flowing in the same channel.

The theory-based closure relations for laminar stratified flow, recently derived in Ullmann et al. (2004) for
the wall and interfacial shear stresses, were extended to make them applicable also for cases of turbulent flow
in either or both of the phases. The new closure relations are formulated in terms of the commonly used single-
phase-based expressions, which are augmented by the two-phase interaction factors. In particular, the expres-
sions obtained for the wall shear are capable of representing the change in the direction of the wall shear-stress
when gravity driven backflow of either of the phases is encountered in the near wall region (i.e. in the heavy
phase in concurrent up-flow, or in the light phase in concurrent down-flow).

The TF model predictions obtained with these new closure relations (MTF model) were validated by com-
parison with the results obtained for the case of pseudo-single-phase turbulent pipe flow and with pressure
drop and holdup data of Espedal (1998) for turbulent gas–liquid stratified flow with a smooth interface. These
closure relations are basically valid for gas–liquid and liquid–liquid gravity dominated systems in the stratified
smooth regime. However, they were further used as a platform for introducing necessary empirical corrections
to represent the wave effects in the gas–liquid stratified wavy regime.

Based on the experimental data of Ottens (1998) and Chen et al. (1997) for holdups and wall wetted perim-
eters in the stratified wavy regime, a new correlation was obtained for the curvature of the gas–liquid interface.
According to this correlation, the time-averaged shape of the wavy gas–liquid interface is concave. The annu-
lar configuration is gradually approached by increasing the shear of the gas phase or the liquid to gas velocity
ratio, and is enhanced by reducing the gravity force.
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The correlation for the interfacial curvature was combined with pressure drop and holdup data from the
literature for concurrent horizontal, upward and downward inclined stratified flows, to obtain new empirical
corrections for the wave effect on the interfacial shear stress and on the liquid wall shear stress. The correla-
tions and the data indicate that the large waves can increase the interfacial shear and the liquid wall shear by
up to ten times the value predicted for smooth stratified flow.

The results of this study indicate that the new closure relations are essentially representing correctly the
interaction between the phases over a wide range of the stratified flow parameters space in the stratified
smooth and stratified wavy regime. However, miss prediction of the holdup may be encountered in gas–liquid
up-flow, under (or close to) conditions where multiple solutions are obtained, due to the high sensitivity of the
results to small variation in the interfacial and liquid wall shear stresses. The prediction in these regions should
be approached with extra care, and one should examine all possible solutions and their sensitivity to the model
empirical correction factors and assumptions.
Appendix A. Rough wall surface

The Blasius type power-law model for the wall friction factor (Eq. (5.1)) is valid for hydrodynamic-smooth
wall. In case of turbulent flow in rough pipes, the wall friction factors are calculated based on Haland (1983)
equation. For single phase turbulent flow this equation yields
1ffiffiffiffiffiffiffiffiffi
f1s;2s

p ¼ �3:6log10
6:9

Re1s;2s
þ js

3:7D

� �1:11� �
ðA:1Þ
where js is the wall roughness. This equation is a good explicit approximation to the Colebrook (1939) implicit
equation (with 1.5% precision for 4 · 104 6 Re 6 108, 0 6 ~js ¼ js=D 6 5	 10�2Þ. Thus, in case of turbulent
flow of either of the phases, the wall friction factor f1 or f2 (used in Eqs. (3) and (4), respectively) are given by
1ffiffiffiffiffiffiffi
f1;2

p ¼ �3:6log10
6:9

Re1;2
þ js

3:7D1;2

� �1:11
 !

; Re1;2 ¼
q1jU 1;2jD1;2

l1;2

; D1;2 ¼
4A1;2

ðS1;2 þ SiÞ
ðA:2Þ
The corresponding Martinelli parameter in case of turbulent flow in both phases is then given by
X 2 ¼ f1s
f2s

q1

q2

jqjq ðA:3Þ
The interfacial friction factors fi1, fi2 are calculated by Eq. (A.2) with js = 0. The effective power-law expo-
nents for particular Reynolds numbers Re1,2 (needed in Eqs. (3), (4) and (6)) are evaluated by
n1 ¼
logðf þ

1 =f
�
1 Þ

logðReþ1 =Re�1 Þ
; n2 ¼

logðf þ
2 =f

�
2 Þ

logðReþ2 =Re�2 Þ
ðA:4Þ
where f þ
1;2; f �

1;2 are the wall friction factors obtained by Eq. (A.2) for Reþ1;2 ¼ ð1þ dReÞRe1;2 and
Re�1;2 ¼ ð1� dReÞRe1;2, respectively (e.g. dRe = 0.01).

Note that in cases of smooth pipe wall, Eqs. (A.1)–(A.4) with js = 0 can replace the power-law expressions
(Eq. (5.1)) for the friction factors.
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